\qquad
\qquad

Worksheet 2-3: Polynomial Equations

Key Concepts relating to the Factor Theorem

- The real roots of a polynomial equation $P(x)=0$ correspond to the x-intercepts of the graph of the polynomial function $P(x)$.
- The x-intercepts of the graph of a polynomial function correspond to the real roots of the related polynomial equation.
- If a polynomial equation is factorable, the roots are determined by factoring the polynomial, setting its factors equal to zero, and solving each factor.
- If a polynomial equation is not factorable, the roots can be determined from the graph using technology.

Practice 1: Solve Polynomial Equations by Factoring

Solve.
(a) $x^{3}-x^{2}-2 x=0$.
(b) $3 x^{3}+x^{2}-12 x-4=0$.
(c) $-x^{3}+2 x^{2}+4 x-8=0$

Name: \qquad
Date: \qquad ws 2-3

Practice 2: Use the Factor Theorem to Solve a Polynomial Equation
(a) Solve $2 x^{3}+3 x^{2}-11 x-6=0$
(b) What do the values of x in part (a) represent in terms of the related polynomial function?
\qquad
\qquad

Practice 3: Solve a Polynomial Equation with Non-Real Roots

Note: A polynomial equation may have real and non-real roots.
Solve $(x-3)\left(x^{2}+1\right)=0$.

* The x-intercepts of the graph of a polynomial function correspond to the real roots of the related polynomial equation.

$$
y=2 x^{3}+3 x^{2}-11 x-6
$$

$$
y=(x-3)\left(x^{2}+1\right)
$$

Practice 4: Determine the Roots of a Non-Factorable Polynomial Equation

(a) Solve $x^{4}+4 x^{3}+5 x^{2}=0$. Round the roots to one decimal place.

Name: \qquad
Date: \qquad
(b) Solve $x^{3}-3 x=-1$. Round the roots to one decimal place.

Practice 5: Problem Solve by Determining the Roots of a Polynomial Equation

The volume, V, in cubic centimetres, of a block of ice that a sculptor uses to carve the wings of a dragon can be modelled by $V(x)=9 x^{3}+60 x^{2}+249 x$, where x represents the thickness of the block, in centimetres. What maximum thickness of wings can be carved from a block of ice with volume $2532 \mathrm{~cm}^{3}$?

